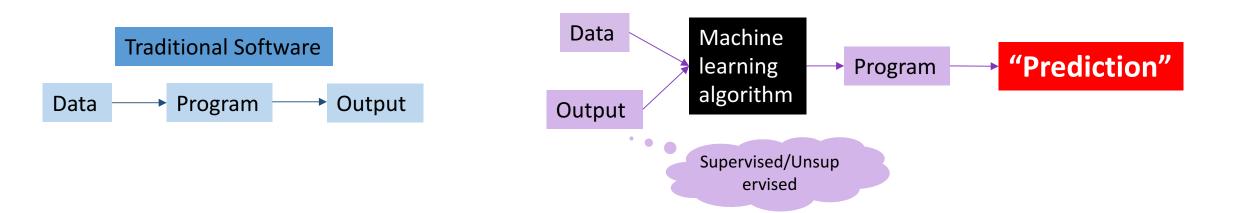
Supervised learning methods for gut microbiota signature identification

Sam Zhu

Third year Ph.D. student

Supervisor: Professor Margaret IP


Joint Graduate Seminar

Department of Microbiology

7th December 2017

"What is machine learning?"

Characters of microbiome data:

- High dimension (OTUs, MLGs)
- Labeled (Clinical features)
- Predictions

Common analysis methods:

- α and β diversity
- Classical statistics testing
- Non-supervised Learning: PCoA, clustering...

Why supervised machine learning?

Applications:

- Text, image classification
- Microarray
- Biological image
- Cancer prediction (susceptibility, recurrence, survival)

Supervised Learning methods:

- Decision trees
- Ensembles (Random forest...)
- Native Bayes
- Linear model
- Support vector machine
- Neural networks

Basic concepts of modelling

- Training and Testing
- Underfit and Overfit
- Evaluation parameters:
 - AUC: area under ROC (receiver operating characteristic)
 - Expect Prediction Error
 - Matthews correlation coefficient (MCC)

Random forest (RF)

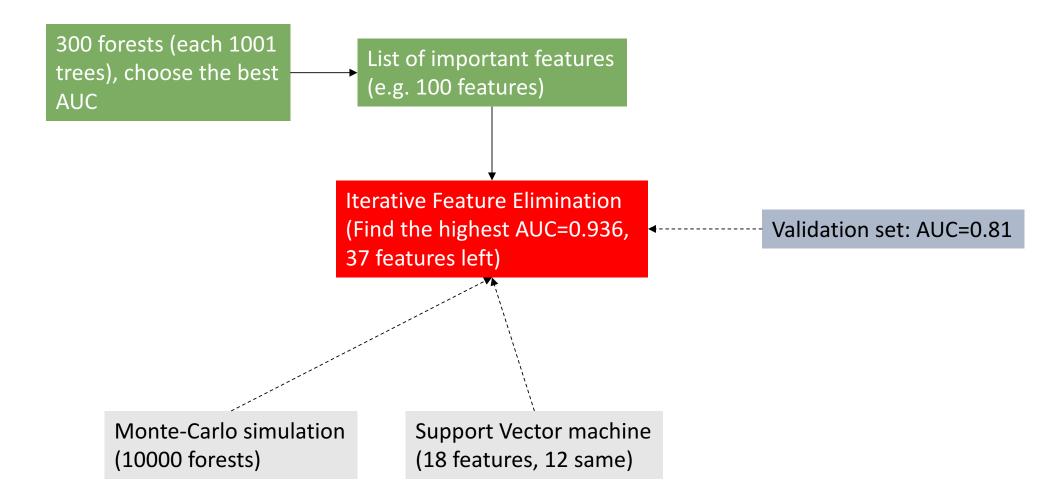
- Decision tree
 - Simple, fast, interpretable
 - Overfitting
 - Non-robust

Random forest (RF)

- RF \rightarrow Bootstrap aggregating (bagging) \rightarrow Ensemble learning
- Bootstrap sampling
- Random picking features
- Voting for the best
- Application: Microarray

Cell Metabolism

Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease


Data:

- Metadata
- Gut microbiome (Metagenome) Result:
- Biopsy

Target:

• Predicting Advanced Fibrosis in non-alcoholic fatty liver disease (NAFLD)

Methods and results

Colorectal cancer (CRC) and gut microbiome

Year	Author	Data type	Method	AUC (Validation set)	Features selected
2014	Zackular	16S	Bayesian	0.798	6 OTU
2014	Zellar	16S	LASSO	0.84 (0.85)	Ranking features
2015	Qiang feng	metagenome	Random Forest	0.98 (0.96)	15
2017	Ai Luoyan	16S	Random Forest	0.94 (0.86)	

- Four studies since 2014
- Ai has evaluated some supervised classifiers, with random forest and Bayes Net the best
- RF and LASSO found lack of *Streptococcus salivarius* (Bacteriocin-like Inhibitory Substances)

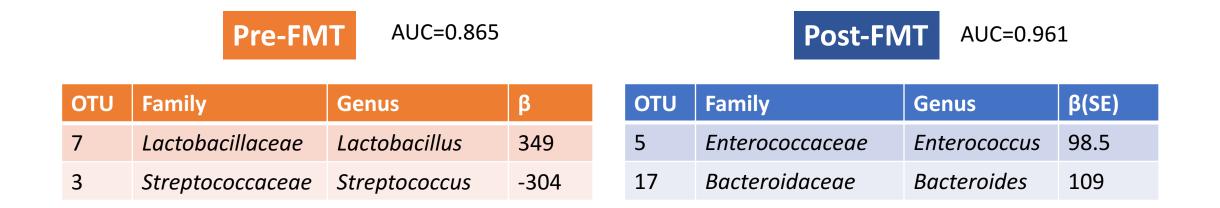
Limitations of Random Forest:

Not explicitly do feature selection

"The purpose of models is not to fit the data but to sharpen the question."

- S Karlin, 11 th R A Fisher Memorial Lecture, 1983

LASSO (Least absolute shrinkage and selection operator)


Elastic Net Regularization

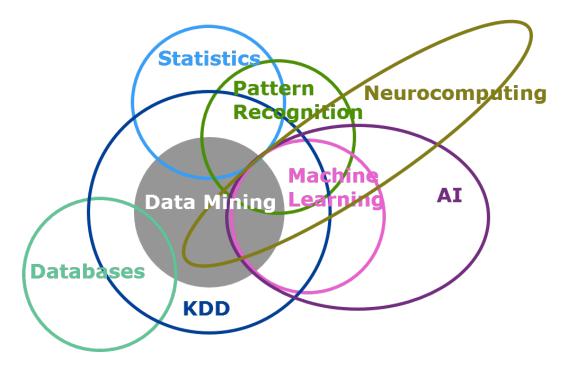
- Coefficient problem in Linear or Logistic regression
- 'Ridge' & 'LASSO' Penalty
- 'LASSO' Penalty: Set many coefficients to zero, catch 'Big Fish'

			ledian control el. abundance	Contribution to model
Potential of fecal	51%	Fusobacterium nucleatum subsp. vine Fusobacterium nucleatum subsp. ani Peptostreptococcus stomatis Porphyromonas asaccharolytica		23.3% 12.3% 9.4% 6.4%
microbiota for		Clostridium symbiosum Clostridium hylemonae Bacteroides fragilis Lactobacillus salivarius	4E-06 1E-06 1E-04 1E-06	5.7% 2.3% 1.3% 1.2%
early-stage		Fusobacterium gonidiaformans Lactobacillus ruminis Eubacterium rectale	1E-06 1E-06 0.02	0.8% 0.5% 0.7%
detection of		Bacteroides caccae Eubacterium ventriosum Clostridium scindens	0.002 0.002 6E-06	0.8% 0.8% 1.2%
colorectal		Eubacterium eligens Bifidobacterium angulatum Methanosphaera stadtmanae	0.007 1E-05 1E-06	1.4% 1.5% 1.5%
cancer		Dorea formicigenerans Butyrivibrio crossotus Phascolarctobacterium succinatutens unclassified Ruminococcus sp.	0.002 1E-05 1E-05 0.01	1.6% 1.7% 2.9% 5.5%
 10 times resampling 10 fold are consideration 		Streptococcus salivarius CRC progression	9E-04 Г-Т -2	9.1%
 10-fold cross-validation 100 LASSO models, 		Metagenomic test score FOBT Hemoccult Wif-1 gene methylation test	Mean log-odds ratio % of total absolute weight	
existed in >50%			Enriche	n with CRC d in controls
org Zeller Julien Tan 2014			Enriche	d in CRC patients

Clostridium difficile

- 1. Pre-FMT(Fecal Microbiota Transplant) microbiota & clinical response to an FMT
- 2. Post-FMT microbiome & additional FMTs

Performance of different classifiers


Table 2. Performance of various classifiers on the benchmark data sets

				Average test error (average number of OTUs)				
Method	Mean rank	Mean ir	ncrease in error	Costello Body Habitats	Costello Skin Sites	Costello Subject	Fierer Subject	Fierer Subject \times Hand
RF	1.7	0.01	RF	0.09 (2484)	0.34 (2152)	0.11 (1522)	0.00 (475)	0.28 (507)
MNB	2.3	0.05		0.08 (2741)	0.42 (2227)	0.23 (1592)	0.04 (554)	0.23 (554)
NSC	2.4	0.04		0.09 (1842)	0.42 (2006)	0.20 (1391)	0.01 (320)	0.25 (326)
ENET	3.6	0.06	LASSO	0.11 (385)	0.43 (700)	0.13 (566)	0.05 (59)	0.33 (137)
SVM	5.0	0.25		0.19 (2741)	0.55 (2227)	0.54 (1592)	0.17 (554)	0.54 (554)

Random forest is a good classifier while LASSO is the first choice of feature selection

Careful! Not statistics! 200+ years vs 30 years

- Statistician: Significant! I have p value! I can show you inference!
- Machine learning expert: I don't know what happened, I repeated 1000000 times and that's it.

Machine learning : Based on data (More!), no requirement of data type (tricked by data). Learn fast, handle complex data, accurate.

Thank you